

Abstract— Many applications are turning to Cloud Computing to

meet their computational and data storage needs. Effective Cloud
Computing is possible, however, only if resources are scheduled
well. Nowadays, Internet of Things (IoT) paradigms, management of
such huge number of job processing systems is a challenging
problem. In addition, heterogeneity is a typical characteristic of
today’s cloud (caused by incremental upgrades and combinations of
computing architectures). This paper presents a multi-agent model for
job scheduling in Cloud Computing Systems. We created a model
based on the multi-agent systems paradigm. Then we got the model
executed in NetLogo and the simulation input is Google Cluster
Workload Traces data set. The model consist of group of autonomous
agents and has an ability to cooperate with the other agents in the
system. Due to these abilities of agents, the structure of the system is
more suitable to handle dynamic changes and load as number of
machines and requests increase. We compare different parameters for
the scheduling model for hybrid and proposed multi-agent based
architecture. Our simulation results indicate that a distributed
architecture with multi-agent system and local blackboards for agent
groups holding the cluster state yield 30% better average end-to-end
resource utilization and 10% delay performance than the hybrid
architecture.

Keywords—Agent-Based Job Scheduling, Multi-Agent Systems,
Job Scheduling, Cluster Scheduling, Internet of Things (IoT).

I. INTRODUCTION
HE amount of data in our world is exploding, and this is

due to the extensive use of applications based on
multimedia and social media. Analyzing such large data sets
has become a key basis of competition. Cloud Computing (or
simply cloud) infrastructure enables to transforms such
information and data into actionable insights. Mell and Grance
[1] define Cloud Computing as a model for enabling
ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction.

Job Scheduling is a vital activity of the Cloud Computing
[2]. The management of the cloud resources requires making
scheduling decisions involving cloud resources assigned to

Faculty of Computer and Information Science, Ain shams University,
Cairo, Egypt.

Khaled M. Khalil (e-mail: kmkmohamed@gmail.com).
M. Abdel-Aziz (e-email: mhaziz@cis.asu.edu.eg).
Taymour T. Nazmy (e-mail: timor.mohammad@cis.asu.edu.eg).
Abdel-Badeeh M. Salem (e-mail: absalem@cis.asu.edu.eg).

users’ jobs. The scheduling problem deals with the
coordination and allocation of resources so as to efficiently
satisfy the users’ needs. Cloud users send their applications to
the Cloud Computing System. Applications consist of specific
number of jobs. Tasks are created per job and they may or may
not depend on each other. Tasks generally require the use of
different kinds of resources, e.g., computation, memory,
communication (network), internal/external storage resources,
GPU, or specific instruments.

The goal of the Cloud Scheduler is to meet user demands in
terms of cost and response time while increasing providers’
profit and resource utilization [3]. Due to the novelty of the
Cloud Computing field, there is no standard task scheduling
approach to handle the dynamic workload of users [2]. Limited
communication bandwidth is preventing the current algorithms
to be applied in cloud. The scheduler does not have control
over the resources or the jobs. The complexity of cloud
applications, the diverse user requirements and the system
heterogeneity would result in inefficient scheduling in the case
of a manual procedure. So the scheduler must make best-effort
decisions to utilize the resources and provide best response to
users’ jobs.

The architecture of the schedulers has evolved over the last
few years moving from monolithic design to more flexible,
distributed and hybrid design (monolithic, two-levels, shared-
state, distributed, and hybrid scheduling) [4], [5], and [6]. The
monolithic schedulers are working in determined space and
have the supervision to define the assignment over all
available resources. All workloads are handled by the same
scheduler and all tasks run through the same scheduling policy.
The scheduling policy is simple and uniform, but this has led
to increasingly sophisticated schedulers developed. To address
these problems, a two-level schedulers have been developed
by separating resource allocation and task placement [7]. This
allows the logic of the task placement to be customized in the
form of queues supporting the different users’ applications.
This approach has a drawback that the task allocation system
cannot see all possible options and hence be subject to degrade
the performance of the tasks execution. Shared-State
schedulers share an out-of-date copy of the cluster state to the
task allocation systems. This is resulting in conflicted and
rejected requests to schedule tasks that may happen between
schedulers due to dynamically changes to the resources. On the
other hand, fully distributed schedulers have no coordination
between them at all. In distributed architecture, schedulers are

Multi-Agent Model for Job Scheduling in Cloud
Computing

Khaled M. Khalil, M. Abdel-Aziz, Taymour T. Nazmy, Abdel-Badeeh M. Salem

T

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 11

mailto:kmkmohamed@gmail.com
mailto:mhaziz@cis.asu.edu.eg
mailto:timor.mohammad@cis.asu.edu.eg
mailto:absalem@cis.asu.edu.eg

assigning resources to the workload [5]. Each scheduler has its
own allocation policy and hence it is difficult to support
complex jobs with specific policies. Hybrid schedulers seek to
handle all the above issues by combining both monolithic and
distributed architectures in one system. Two types of
schedulers are in the system; a distributed scheduler for the
short or low priority tasks and a centralized scheduler for
complex and services (long duration) tasks.

The application of intelligent agent technologies is
considered a promising approach to improve system
performance in complex and changeable environments [8].
Thus, employment of multi-agent systems simulation can
optimize the total system output. In this paper, we propose a
multi-agent simulation model for the job scheduling in Cloud
Computing. We are running our experiments using data of one
cell cluster of more than 12 thousands machines and more than
52 thousands jobs with millions of tasks. We are using google
cluster data [9] for our experiments. Finally, we compare the
results of the proposed model with the hybrid architecture.

The remainder of this paper is organized as follow, in
Section II we provide literature review on related work. In
Section III, we discuss the proposed multi-agent model while
in Section IV we present and analyze the experiments results.
Finally, Section V concludes the study.

II. BACKGROUND

A. Cloud Job Schedulers
Christodoulopoulos et al. [10] and Schopf [11] mentioned

that scheduling in such dynamic environments can be viewed
as hierarchical problem with two levels. The first level finds
the resources needed for the task execution. There are many
variations in this level; such as selecting the resources based
on the best-fit manner, using prediction to estimate availability
of the resources, and using prediction to estimate load of other
tasks running on the resources machines. At the second level,
tasks are assigned to the selected resource for execution. At
this level, tasks may wait for the resources to be available or
other tasks with lower priority can be preempted for the higher
priority tasks to run. Each scheduler should take in
consideration the possible expand of needed resources by the
tasks to avoid high rate of failure. In addition, Schopf [11]
discussed subtasks that describe the detailed behavior of each
level.

Salot [2] did a survey of various scheduling algorithms in
Cloud Computing environment. There are main two categories
of scheduling algorithms; Static Scheduling algorithms and
Dynamic Scheduling algorithms. Static Scheduling algorithms
assume a prior information about all machines in the cluster
and scheduling decisions are made before execution of the
tasks. Singh et al. [12] did a survey on the different approaches
in Static Scheduling such as Homogeneous Distributed
Computing System (HMDCS), Heterogeneous Distributed
Computing System (HTDCS), Monte Carlo Algorithm (MCA)
… etc. If there are changes to the machines, then the static
scheduler must know the changes to avoid failure in

scheduling decisions. This approach depends heavily on the
assumption that all machines share their status globally with
the scheduler on a real-time basis. This is not efficient from the
practical side. On the other hand, Dynamic Scheduling
algorithms study the cluster state for scheduling decisions
before assigning tasks and during application execution.
Kumar and Balasubramanie [13] did a survey in their related
work on different dynamic scheduling approaches.

Also, Salot [2] went through further categorization of these
two types of scheduling algorithms as: First Come First Serve,
Round Robin, Min-Min, Max-Min, Most-Fit, and Priority.
Each of these subcategories has their own advantages and
limitations. First Come First Serve is fast and simple but will
reduce the efficiency of the scheduler in response to higher
priority tasks in front of the long low priority tasks. Round
Robin is based on the First Come First Out approach to be fair
in handling users’ jobs. But long tasks will suffer from high
rate of interruptions and if there is no way to backup and
restore the tasks results then long tasks will be delayed for a
long time. Min-Min is biased towards small tasks to be
executed at first but this will delay long tasks with high
priority. In addition, high priority tasks will be kept waiting for
execution for a long time if system has a stream of short tasks.
Max-Min is biased towards the large tasks which is an
opposite of the Min-Min. Most-Fit is working on the
assumption that each task should have a most-fit set of
resources available in the system for execution. Tasks in this
technique are suffering from low rate of success. Priority
schedulers are based on giving a priority for each task and get
queues for each priority to process them in First Come First
Out manner. Local priority can be given to the task for serving
within the machine that accepted the task assignment. All these
algorithms were handled as policies applied to the resources
queues in the cloud scheduling system. First Come First Serve
is the most common policy with applied priorities.

Dave et al. [14] listed the main performance metrics of
scheduling algorithms; makespan, execution cost, job rejection
ratio, execution time, and user satisfaction level. Makespan is
the time at which all the work in the workload was completed.
Execution cost is the total cost of execution of the job tasks.
Job rejection ratio is defined as the total rejected jobs to the
total number of jobs submitted. Execution time is the time
from when the job tasks are scheduled till it gets its final
results. User satisfaction level is defined as how far the
scheduler system satisfy the terms defined by the service
provider to users. Burkimsher et al. [15] added flow and peak
in-flight count metrics. Flow can be defined as the count of
number of jobs completed over the makespan. Peak in-flight
count is the maximum number of in-flight jobs at any time. For
more discussions about these metrics check [15].

On the other hand, various schemes are used to decide
which particular task to run [8]. Parameters that might be
considered including task priority, resource availability,
license key if job is using licensed software, execution time
allocated to user, number of simultaneous jobs allowed for a

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 12

user, estimated execution time, elapsed execution time,
availability of peripheral devices, occurrence of prescribed
events, task dependency, file dependency, and operator prompt
dependency.

B. Schedulers Architecture
Cloud Scheduler has multiple goals: using the cluster’s

resources efficiently, working with user-supplied constraints,
scheduling applications, and having the acceptable level of
fairness. To reach these goals, there are five main scheduler
architectures: monolithic, two-level, shared-state, distributed,
and hybrid.

Monolithic Schedulers like Google Borg [3] are a
centralized and static schedulers that make scheduling
decisions by one and only one scheduler. These types of
schedulers do not support parallel tasks. Google Borg runs
everything in the cloud so it is very complicated. Borg has two
priorities bands High and Low and all jobs are statistically
scheduled.

Two-Level Schedulers like Apache YARN [7] and Mesos
[16] are centralized and static schedulers that separate the
resource allocation from the task management operations. In
such schedulers, systems have one resource manager that
grants resources to multiple independent schedulers, in which
each scheduler has certain policies for resources queuing for
resource allocation based on the user preferences. This type of
schedulers are less complex than the Monolithic ones as they
delegate the pre-application scheduling work to the
applications themselves while managing the distribution of
resources between applications and enforcing fairness.

Shared-State Schedulers like Google Omega [4] are
centralized and static schedulers with a shared state of the
cluster state. They are a successor to the two-level schedulers
and they take the resources offered one degree further. All
resources available in the cluster are offered to the applications
and conflicts are resolved at task execution time. All
applications schedulers have the same view of the cluster
resources which increase the scheduling performance and
resources utilization. Applications with high priority are
allowed to preempt lower priority and stay within the limited
number of jobs and resources assigned to the application.

Distributed Schedulers like Sparrow [5] are like multiple
isolated schedulers to serve the incoming workload. Each one
of these schedulers works with its local, partial, and often out-
of-date view of the cluster. That’s why it is difficult to enforce
global fairness. More or less, supporting complex-applications
and specific applications policies are more complex than other
architecture of schedulers.

Hybrid Schedulers like Microsoft Mercury [6] try to address
all the drawbacks of the previous architectures. Two
approaches are incorporated to handle the workload, group of
distributed schedulers for very short and/or low-priority tasks
and one centralized scheduler for the rest of workload (high
priority tasks and/or long tasks like system services).

C. Multi-Agent Systems for Cloud Resource Management
The multi-agent systems features (dynamic, flexibility,

autonomy, and learning) are exactly the same features that a
Cloud Computing System needs for the self-management of its
resources. The scheduling decision process is complex, due to
the variability of the demand for services and the lack of
information on the resources. This is why the agent-based job
scheduling is suitable for the efficient allocation of resources
enabling the dynamic and automatic adaptation.

Some of the essential characteristics of Cloud Computing
include resource pooling and resource sharing. In cloud,
computing resources are pooled to serve multiple users, and
data are shared by a broad group of cross-enterprise and cross-
platform users. Sim [17] mentioned that resource pooling and
sharing involve (1) combining resources through cooperation
among cloud providers; (2) mapping, scheduling, and
coordination of shared resources; and (3) establishment of
contracts between providers and consumers. In Agent-Based
Cloud Computing, cooperation, negotiation, and coordination
protocols of agents are adopted to automate the activities of
resource pooling and sharing in clouds. All the above-
mentioned challenges provide the motivations for adopting
autonomous agents to allocate resources taking in
consideration the dynamically changing resource demands.

In addition, Sim [7] discussed Agent Based Cloud
Computing as agents do cloud service discovery, service
negotiation, service composition, and cloud crawlers. Agent
Based Cloud Service Discovery is to run a query to cloud
services registered to match consumer functionality. Agent
Based Service Negotiation is to establish SLAs (Service Level
Agreements) between consumers and brokers. Agent Based
Service Composition is to group related services from different
suppliers into a single bundle of services. Agent Based Cloud
Crawlers are agents that collect information about the cloud
service providers.

Gąsior and Seredyński [18] discussed a decentralized
implementation of multi-agent system for job scheduling. But
they are focusing on scheduling jobs based on a security model
to avoid dispatching jobs to untrustworthy resources. The
security model incorporates awareness during the scheduling
operation to match job’s security requirements by the user with
security guidelines defined for each Cloud site. Kanmani and
Sukanesh [8] discussed an optimization of the scheduling
using the multi-agent system paradigm and genetic algorithm
for hybrid cloud. They are looking for improving the quality of
service to the end user of the cloud system. They are adding an
extension to CloudSim [19] for their experiments. They are
normalizing the resource allocation using multi-agent genetic
algorithm which takes action to change the resources
allocation rates depending on the current behavior of the
system.

D. Cloud Simulators
Cloud Simulation is used in evaluating architectures,

algorithms, and strategies that are under research and
development tackling many issues such as resource

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 13

management, application scheduling, and workload execution
[19]. As the exact cloud production environment may not be
accessible to the developers at the early stages of
development; simulations give an overall idea on the related
parameters, resource requirements, performance, and output.
In addition, due to the complexity of the schedulers, Cloud
Simulators are become much important [20].

Cloud Simulators are quite generic like CloudSim [19] and
EmuSim [21]. But some of them tend to be more focused on
simulating specific functions like peer-to-peer and overlay
networks as PeerSim [22] and OverSim [23]. Suryateja [20]
provided a comparative analysis of cloud simulation tools.

III. THE PROPOSED MULTI-AGENT MODEL
User applications submit jobs to the scheduler system.

Each job consists of one or more tasks that need to be
scheduled to consume the cloud resources for a specific period
of time. The time needed for the task is based on the task
execution pattern. During the task execution time, resources
assigned to the task are reserved for the task event if not totally
consumed.

Scheduling a task can be defined in terms of the following
agents:

1- Applications Agents: a set of applications agents
created by the users.

a. Application Class includes ID, Username,
and User Preferences fields.

b. Application Agents do submit the jobs and
do report the status of them back to the user.

2- Job Agents: a set of jobs agents submitted by users’
applications.

a. Job Class includes ID, Application ID, User,
and Job Name fields.

b. Job Agents do submit the tasks for resources
assignment. In addition, they are responsible
for reporting the status and result of the tasks
back to the job agent.

3- Task Agents: each job is consisting of a set of tasks
agents. Tasks are the objects that can be assigned to
resources.

a. Task Class includes ID, Job ID, Attributes,
Priority, Resources Requests, and Requested
Start Time fields.

b. Task Agents are responsible for reporting
task status back to the parent job agent.

4- Machines Agents: a set of machines that hosts the
resources for assignment.

a. Machine Class includes ID, Name,
Resources Set, and Attributes fields.

b. Machine Agents are responsible for reporting
the health and other statistics of the machine
and to the cloud service manager.

5- Queues Agents: a set of resources queues. Each queue
has a policy for sharing resources between
applications.

a. Queue Class includes ID, Policy, and Queue
Data Structure fields.

b. Queues Agents are responsible for reporting
the queue status back to the cloud service
manager.

6- Scheduler (s) Agents: a set of schedulers. Each
scheduler has an algorithm to handle the scheduling
decisions.

a. Scheduler Class includes ID, algorithm, and
metrics data fields.

b. Scheduler Agents are responsible for
handling scheduling decisions and report
back performance statistics back to the cloud
service manager.

Other Classes:
1- Hard Constrains: a set of constrains which must not be

violated by the scheduler. Such as running the data
tasks near to the data source to avoid exhausted
network channels. Hard Constrain Class includes ID,
Constrain Type, and Constrain Value field.

2- Soft Constrains: a set of constrains that can be relaxed
if necessary to improve the scheduler performance.
Such as avoiding resources unfairness, minimizing
machines fragmentation, and reducing the ratio of
evicted tasks. Soft Constrain Class includes ID,
Constrain Type, and Constrain Value field.

3- Resources: a set of available resources to which tasks
can be assigned. Resource Class includes ID, Type,
and Value field.

Fig. 1 shows the agents and classes of the proposed

scheduler model. Arrows are showing the relationship between
the classes. A group of local blackboard spaces is kept shared
between all agents with an up-to-date state of the cluster
resources. Each machine agent is responsible for updating the
nearest blackboard with the machine updates. If machine agent
failed to communicate the updates to the blackboard for a
specific period of time then the machine is considered as lost
and all tasks running at that machine is marked as lost.

Fig. 1 Proposed System Agents and Classes

IV. 3BRESULTS AND DISCUSSION

A. 9BTechnical Characteristics of the Simulator and Google
Cluster Data

The model is developed using NetLogo 5.3 [24]. We
preferred accuracy of the modeling over execution time. So the
early development versions of the model took long time for

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 14

simulation. We followed the instructions from Railsback et al.
[25] to improve execution time of the model and to detect the
bottlenecks. We have extra lessons learned to add to the
checklist for NetLogo simulation of complex and large scale
models: (1) avoid using filtration with “with” keyword for the
agent sets. Instead use the “ifelse” block inside the agent set
operations, (2) avoid looping in a list within the agent set
block. It is showing slow performance compared to checking if
the item is a member of the list or not, (3) nested operations of
two or more groups of agent sets will draw the performance of
the simulation model at all, and finally (4) avoid showing
updates in the simulation view as this will slow down the
model execution.

We used Google Cluster Trace Data [26] as input for the
workload of the simulation model. The data set consists of
more than 40GB of row text data collected from one cell in
Google Data Center of 12,583 machines over 29 days. 552
users were submitting applications with 350,926 unique jobs.
The data set includes users’ jobs, tasks and heterogeneous set
of machines. Machines, jobs and tasks events include when
machines were added or removed from the cluster, when jobs
were submitted, and full details about the tasks attribution and
execution. Tasks per job are ranging from one task per job
(low priority and short task) to more than 20 thousands tasks
(long term service) per job. Google normalized the machines
resources to specific ranges for privacy aspects and we saw no
reason from our side to rescale back the values. Fig. 2 shows
the state transitions of a task in the data set. More analysis and
details about the data set are provided by [27] and [28]. Tasks
start with Un-submitted state. Once the task is submitted, it is
moved to the Pending state. When the task is scheduled and
assigned to a machine, the state is changed to Running. If the
task failed, killed, machine lost, then the task state will be
changed to Dead. If the task is evicted due to a higher priority
task then the task state is changed to Evict. Dead and Evict
tasks will be resubmitted to be in the Pending state. Once the
running task finish, it is moved to the “Complete” state.
Finally, the task is cleaned and removed from the system.

Fig. 2 State Transitions of a task in Google Cluster Trace Data

To reduce the amount of data loaded to the model, we went

through some actions to cleanse the trace data. We have
removed jobs and tasks that were added before the trace
window and are still running. The trace data has all jobs with
tasks with the same requirements. In addition, the tasks
execution details included are for the version of Google Borg
deployed at the cluster by the time the records extracted. So

we eliminated the millions of duplicate records for the job
tasks into one record per job including the number of tasks and
tasks requirement for the job. This resulted in one record per
job and removed records of all tasks in the data set.

B. Features of the Proposed Model
Our proposed model handles the assignment of the tasks

into two phases. Phase one is to select the feasible machines. It
starts with selecting random machines that satisfy the resource
requirements of the task. Phase two is to calculate score for
each selected machine based on the E-PVM formula
mentioned in [29]. Then select the machine with the lowest
score to assign the task to it. In our model, we are grouping
machines by score so that selecting machines from the highest
scores is trivial. This is supported by the local group
blackboard. Local blackboard rather than a global blackboard
to reduce the communication overhead through the network.
This also reduces the fragmentation of the job tasks as being
assigned to a specific group of resources in one area. Our
model is biased towards getting highest priority tasks complete
first. In case of resources shortage, low priority tasks are
subject to be preempted to secure resources for higher
priorities tasks.

We ran our experiments for several times using different
seed numbers for random number generator. In all of our
experiments, we measure task throughput, job throughput,
preemption rate, and resources utilization. Reported metrics
can be extended easily in the proposed model. Fig. 3 (a, b, c,
and d) show values of the scheduling metrics. To stress the
model and reach the machines limit, we’ve selected to run the
experiments with 500 out of the 12 thousands machines
available machines.

The user interface of the model includes parameters for the
simulation. Table I shows the model parameters.

Table I Proposed Model Parameters for Job Scheduling

Parameter Range Value Description
Number of
Schedulers

1 - ∞ 5 This is the number of active
schedulers agents to run in
parallel to schedule the tasks.

Trace Time
Map

1µs - ∞ 1000
µs

This is to map the simulation
tick (time) to the timespan
from the trace data. Time in the
trace data is in micro seconds.

Number of
Machines

1 - 12561 500 A random sample of specific
size of all available machines
to be involved in the resource
assignments. Machines are
selected randomly from the
available set of machines.

Percent of
resources
per
Machine

0.1 – 0.9 0.5 Percent of allowed resources
per machine for assignment.
Assigned tasks must not
consume all resources available
in the machine. Machine OS
and machine agent should have
some computation power and
memory space to operate. In
addition, high priority tasks
have the possibility to burst
and request more resources
within the same machine it is
running at.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 15

Parameter Range Value Description
Task Max
Length

1 tick - ∞ 3 ticks Max length of any task
generated during the
simulation.

Tasks
Queue Size

1 - ∞ 50000 Maximum number of tasks
assigned to each queue in the
system.

Minimum
number of
machines
feasible for
scoring

1 - ∞ 20 Minimum number of machines
randomly selected for
feasibility check before
scheduling.

Marginal
Cost Rate

0.1 – 0.9 0.3 The rate in calculation of the
cost of scheduling the task to
the machine based on the
available resources in the
machine and the number of
tasks running in the machine.

Fig. 3.a shows the available and assigned memory to tasks
over time. Due to an out-of-data status of the cluster resources,
hybrid schedulers were not being able to find more resource
for the tasks to run. The same is applied to the assigned CPUs
as per Fig. 3.b. Resource consumption kept in the range of
40%. 50% is the parameter of the maximum allocated to tasks
as hard constrain and the 10% is the range in which no task fit
the available resources in machines. Resource utilization is
improved by 30% in the proposed agent-based model. Fig. 3.c
simply shows the status of the jobs compared to the submitted
jobs during the experiments window. As improved throughput
of tasks and utilized resources, we’ve got more jobs finished
earlier. Fig. 3.d shows the tasks per status for the hybrid and
proposed agent-based architectures. We’ve got 60 thousands
tasks in the queue as per the limit parameter. Remaining tasks
are kept un-submitted until tasks were cleaned from the queue.
10% improvement in tasks throughout due to improved
resources utilization. This is resulted in more tasks complete
and less number of tasks in the pending state. The figure does
not show the lost tasks as it is the same for both architectures.
When a machine is lost due to some reasons, all the tasks
agents assigned to them will not send their status back to the
job agent. After a specific timeout (1 tick in our simulation)
the tasks were considered dead and resubmitted again to the
queue. In summary, our simulation results indicate that a
distributed architecture with multi-agent system and local
blackboards for agent groups holding the cluster state yield
30% better average end-to-end resource utilization and 10%
delay performance than the hybrid architecture.

Fig. 3.a Machines Memory

Fig. 3.b Machines CPUs

Fig. 3.c Jobs Status

Fig. 3.d Tasks Status

V. CONCLUSION AND FUTURE WORK
Due to the developing rate of trade, industry, and science

world; scheduling is considered as one of the main discussions
in cloud environment. As providing scheduling approaches
which can minimize tasks runtime and increase operational
power has remarkable importance in these categories. This
paper presents a multi-agent model for job scheduling in Cloud
Computing. Scheduling user applications is performed as a
means to balance the load of the cloud system resources in
order to improve the performance and throughput of the
system. We have developed a NetLogo model with the
proposed multi-agent model behavior and got Google Cluster
Trace Data as input to the simulation. We got the experiments
results shown and analyzed comparing the hybrid and
proposed multi-agent based scheduler architectures. In
addition, we analyzed the performance metrics of the proposed
system. The proposed model is extendible to get more
constrains on assigning resources applied as access to local
group resources is applicable at any time. We consider this

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 16

research to be the first step towards more adoption of the
multi-agent paradigm in the job scheduling domain. We are
going to get the communication, negotiation and scheduling
decisions improved by adopting machines learning algorithms
for the scheduling agents.

REFERENCES
[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”

NIST Special Publication 800-145, 2011.
[2] P. Salot, “A Survey of Various Scheduling Algorithm in Cloud

Computing Environment,” IJRET: International Journal of Research in
Engineering and Technology, vol. 02, no. 02, ISSN: 2319-1163, 2013.

[3] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J.
Wilkes, "Large-scale cluster management at google with borg," in Proc.
The Tenth European Conference on Computer Systems, article no. 18.
ACM, 2015.

[4] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
"Omega: flexible, scalable schedulers for large compute clusters," in
Proc. SIGOPS European Conference on Computer Systems (EuroSys),
ACM, Prague, Czech Republic, pp. 351-364, 2013.

[5] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, Low Latency Scheduling,” in Proc. The Twenty-Fourth
ACM Symposium on Operating Systems Principles, pp. 69-84, 2013.

[6] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M.
Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga, “Mercury:
Hybrid Centralized and Distributed Scheduling in Large Shared
Clusters,” in Proc. USENIX Annual Technical Conference, pp. 485-
497, 2015.

[7] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R.
Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O.
O'Malley, S. Radia, B. Reed, and E. Baldeschwieler, "Apache Hadoop
YARN: yet another resource negotiator," in Proc. SOCC '13 The 4th
annual Symposium on Cloud Computing, article no. 5, 2013.

[8] A. Kanmani and R. Sukanesh, "Optimized Scheduling using Multi-
Agent Based Genetic Algorithm for Hybrid Cloud," International
Journal of Advanced Engineering Technology, vol. 7, no. 1, pp. 980-
983, 2016.

[9] Google Cluster Workload Traces. Available:
https://github.com/google/cluster-data

[10] K. Christodoulopoulos, V. Sourlas, I. Mpakolas, and E. Varvarigos, “A
comparison of centralized and distributed meta-scheduling architectures
for computation and communication tasks in Grid networks,” Computer
Communications, vol. 32, no. 7-9, pp. 1172-1184, 2009.

[11] J. M. Schopf, “A General Architecture for Scheduling on the Grid,”
Journal of Parallel and Distributed Computing (Special Issue on Grid
Computing), 2002.

[12] K. Singh, M. Alam, and S. K. Sharma, “A Survey of Static Scheduling
Algorithm for Distributed Computing System,” International Journal of
Computer Applications, vol. 129, no. 2, pp. 25-30, Published by
Foundation of Computer Science (FCS), NY, USA, November 2015.

[13] S. K. S. Kumar and P. Balasubramanie, “Dynamic scheduling for cloud
reliability using transportation problem,” Journal of Computer Science,
vol. 8, no. 10, pp. 1615-1626, 2012.

[14] Y. P. Dave, A. S. Shelat, D. S. Patel, and R. H. Jhaveri, “Various Job
Scheduling Algorithms in Cloud Computing: A Survey,” in Proc.
International Conference on Information Communication & Embedded
Systems, IEEE Computer Society, pp. 1-5, ISBN No. 978-1-4799-3834-
6, Chennai, India, February 2014.

[15] A. Burkimsher, I. Bate, and L. S. Indrusiak, "A survey of scheduling
metrics and an improved ordering policy for list schedulers operating on
workloads with dependencies and a wide variation in execution times,"
Future Generation Computer Systems, vol. 29, no. 8, pp. 2009-2025,
2013.

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and I. Stoica, "Mesos: a platform for fine-grained resource
sharing in the data center," in Proc. USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2011.

[17] K. M. Sim, “Agent-Based Cloud Computing,” Journal IEEE
Transactions on Services Computing Archive, vol. 5, no. 4, pp. 564-
577, 2012.

[18] J. Gąsior and F. Seredyński, "A Decentralized Multi-agent Approach to
Job Scheduling in Cloud Environment," Angelov P. et al. (eds)
Intelligent Systems'2014, Advances in Intelligent Systems and
Computing, vol. 322. Springer, Cham, 2014.

[19] R. N. Calheiros, R. Ranjan, C. E. AF. De Rose, and R. Buyya,
"Cloudsim: A novel framework for modeling and simulation of cloud
computing infrastructures and services," arXiv preprint
arXiv:0903.2525, 2009.

[20] P. S. Suryateja, "A Comparative Analysis of Cloud Simulators," I.J.
Modern Education and Computer Science, vol. 4, pp. 64-71, 2016.

[21] R. N. Calheiros, M. A. Netto, C. AF. De Rose, and R. Buyya, "Emusim:
an integrated emulation and simulation environment for modeling,
evaluation, and validation of performance of cloud computing
applications," Software: Practice and Experience, vol. 43, no. 5, pp.
595–612, 2013.

[22] A. Montresor, and M. Jelasity, "Peersim: A scalable p2p simulator,"
Peer-to-Peer Computing, IEEE Ninth International Conference, pp.
99–100, 2009.

[23] I. Baumgart, B. Heep, and S. Krause, "Oversim: A flexible overlay
network simulation framework," IEEE Global Internet Symposium, pp.
79–84, 2007.

[24] NetLogo. Available: https://ccl.northwestern.edu/netlogo/
[25] S. Railsback, D. Ayllon, U. Berger, V. Grimm, S. Lytinen, C. Sheppard,

and J. Thiele, "Improving Execution Speed of Models Implemented in
NetLogo," Journal of Artificial Societies and Social Simulation, vol. 20,
no. 3, 2017.

[26] Google Cluster Trace Data. Available:
https://github.com/google/cluster-data

[27] Z. Liu and S. Cho, "Characterizing Machines and Workloads on a
Google Cluster," in Proc. ICPPW The 41st International Conference on
Parallel Processing Workshops, pp. 397-403, 2012.

[28] C. Reiss, A. Tumanvov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
"Heterogeneity and dynamicity of clouds at scale: Google trace
analysis," in Proc. The Third ACM Symposium on Cloud Computing,
article no. 7, 2012.

[29] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstorm, and A. Keren, "An
Opportunity Cost Approach for Job Assignment in a Scalable
Computing Cluster," Journal IEEE Transactions on Parallel and
Distributed Systems archive, vol. 11, no. 7, pp. 760-768, July 2000.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 17

https://github.com/google/cluster-data
https://ccl.northwestern.edu/netlogo/
https://github.com/google/cluster-data

